Stiffness and hysteresis properties of some prosthetic feet.

نویسندگان

  • H W van Jaarsveld
  • H J Grootenboer
  • J de Vries
  • H F Koopman
چکیده

A prosthetic foot is an important element of a prosthesis, although it is not always fully recognized that the properties of the foot, along with the prosthetic knee joint and the socket, are in part responsible for the stability and metabolic energy cost during walking. The stiffness and the hysteresis, which are the topics of this paper, are not properly prescribed, but could be adapted to improve the prosthetic walking performance. The shape is strongly related to the cosmetic appearance and so can not be altered to effect these improvements. Because detailed comparable data on foot stiffness and hysteresis, which are necessary to quantify the differences between different types of feet, are absent in literature, these properties were measured by the authors in a laboratory setup for nine different prosthetic feet, bare and with two different shoes. One test cycle consisted of measurements of load deformation curves in 66 positions, representing the range from heel strike to toe-off. The hysteresis is defined by the energy loss as a part of the total deformation energy. Without shoes significant differences in hysteresis between the feet exist, while with sport shoes the differences in hysteresis between the feet vanish for the most part. Applying a leather shoe leads to an increase of hysteresis loss for all tested feet. The stiffness turned out to be non-constant, so mean stiffness is used.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the lightweight Camp Normal Activity Foot with other prosthetic feet in trans-tibial amputees: a pilot study.

Clinically relevant information regarding the useability of prosthetic feet is scarce. The industry is not obliged to perform clinical studies before marketing the product. Clinicians however are limited in their possibilities (organisation and finance) to determine the useability of a technical product. This small study is an example of how in general the useability of a technical product is e...

متن کامل

The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking.

In an effort to improve amputee gait, energy storage and return (ESAR) prosthetic feet have been developed to provide enhanced function by storing and returning mechanical energy through elastic structures. However, the effect of ESAR feet on muscle activity in amputee walking is not well understood. Previous studies have analyzed commercial prosthetic feet with a wide range of material propert...

متن کامل

Experimental Validation of the Lower Leg Trajectory Error, an Optimization Metric for Prosthetic Feet

In India alone, there are about one million people with lower limb amputation who require significantly more effort to walk than able-bodied individuals. They are subject to social stigmas preventing them from employment and independent living. There is a gap between the high-performance prosthetic feet in the United States that come at a cost of thousands of dollars and affordable prostheses i...

متن کامل

Altering prosthetic foot stiffness influences foot and muscle function during below-knee amputee walking: a modeling and simulation analysis.

Most prosthetic feet are designed to improve amputee gait by storing and releasing elastic energy during stance. However, how prosthetic foot stiffness influences muscle and foot function is unclear. Identifying these relationships would provide quantitative rationale for prosthetic foot prescription that may lead to improved amputee gait. The purpose of this study was to identify the influence...

متن کامل

The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.

BACKGROUND Below-knee amputees commonly experience asymmetrical gait patterns and develop comorbidities in their intact and residual legs. Carbon fiber prosthetic feet have been developed to minimize these asymmetries by utilizing elastic energy storage and return to provide body support, forward propulsion and leg swing initiation. However, how prosthetic foot stiffness influences walking char...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Prosthetics and orthotics international

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 1990